Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 22(3): 469-479, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30609161

RESUMO

A long-standing question in ecology is how species interactions are structured within communities. Although evolutionary theory predicts close size matching between floral nectar tube depth and pollinator proboscis length of interacting species, such size matching has seldom been shown and explained in multispecies assemblages. Here, we investigated the degree of size matching among Asteraceae and their pollinators and its relationship with foraging efficiency. The majority of pollinators, especially Hymenoptera, choose plant species on which they had high foraging efficiencies. When proboscides were shorter than nectar tubes, foraging efficiency rapidly decreased because of increased handling time. When proboscides were longer than nectar tubes, a decreased nectar reward rather than an increased handling time made shallow flowers more inefficient to visit. Altogether, this led to close size matching. Overall, our results show the importance of nectar reward and handling time as drivers of plant-pollinator network structure.


Assuntos
Néctar de Plantas , Polinização , Açúcares , Flores , Plantas
2.
Ecol Lett ; 17(11): 1389-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167890

RESUMO

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Assuntos
Flores/genética , Magnoliopsida/genética , Filogenia , Polinização , Animais , Abelhas , Dípteros , Modelos Biológicos , Néctar de Plantas/química
3.
Ann Bot ; 103(9): 1459-69, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19228701

RESUMO

BACKGROUND AND AIMS: Many recent studies show that plant-pollinator interaction webs exhibit consistent structural features such as long-tailed distributions of the degree of generalization, nestedness of interactions and asymmetric interaction dependencies. Recognition of these shared features has led to a variety of mechanistic attempts at explanation. Here it is hypothesized that beside size thresholds and species abundances, the frequency distribution of sizes (nectar depths and proboscis lengths) will play a key role in determining observed interaction patterns. METHODS: To test the influence of size distributions, a new network parameter is introduced: the degree of size matching between nectar depth and proboscis length. The observed degree of size matching in a Spanish plant-pollinator web was compared with the expected degree based on joint probability distributions, integrating size thresholds and abundance, and taking the sampling method into account. KEY RESULTS: Nectar depths and proboscis lengths both exhibited right-skewed frequency distributions across species and individuals. Species-based size matching was equally close for plants, independent of nectar depth, but differed significantly for pollinators of dissimilar proboscis length. The observed patterns were predicted well by a model considering size distributions across species. Observed size matching was closer when relative abundances of species were included, especially for flowers with openly accessible nectar and pollinators with long proboscises, but was predicted somewhat less successfully by the model that included abundances. CONCLUSIONS: The results suggest that in addition to size thresholds and species abundances, size distributions are important for understanding interaction patterns in plant-pollinator webs. It is likely that the understanding will be improved further by characterizing for entire communities how nectar production of flowers and energetic requirements of pollinators covary with size, and how sampling methods influence the observed interaction patterns.


Assuntos
Estruturas Animais/anatomia & histologia , Flores/anatomia & histologia , Fenômenos Fisiológicos Vegetais , Polinização/fisiologia , Simbiose/fisiologia , Animais , Mel , Tamanho do Órgão , Característica Quantitativa Herdável , Especificidade da Espécie
4.
Oecologia ; 151(3): 442-53, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17080257

RESUMO

A recently discovered feature of plant-flower visitor webs is the asymmetric specialization of the interaction partners: specialized plants interact mainly with generalized flower visitors and specialized flower visitors mainly with generalized plants. Little is known about the factors leading to this asymmetry and their consequences for the extinction risk of species. Previous studies have proposed random interactions proportional to species abundance as an explanation. However, the simulation models used in these studies did not include potential biological constraints. In the present study, we tested the potential role of both morphological constraints and species abundance in promoting asymmetric specialization. We compared actual field data of a Mediterranean plant-flower visitor web with predictions of Monte Carlo simulations including different combinations of the potential factors structuring the web. Our simulations showed that both nectar-holder depth and abundance were able to produce asymmetry; but that the expected degree of asymmetry was stronger if based on both. Both factors can predict the number of interaction partners, but only nectar-holder depth was able to predict the degree of asymmetry of a certain species. What is more, without the size threshold the influence of abundance would disappear over time. Thus, asymmetric specialization seems to be the result of a size threshold and, only among the allowed interactions above this size threshold, a result of random interactions proportional to abundance. The simulations also showed that asymmetric specialization could not be the reason that the extinction risk of specialists and generalists is equalized, as suggested in the literature. In asymmetric webs specialists clearly had higher short-term extinction risks. In fact, primarily generalist visitors seem to profit from asymmetric specialization. In our web, specialists were less abundant than generalists. Therefore, including abundance in the simulation models increased the difference between specialists and generalists even more.


Assuntos
Adaptação Biológica/fisiologia , Ecossistema , Extinção Biológica , Comportamento Alimentar/fisiologia , Flores/fisiologia , Insetos/fisiologia , Modelos Teóricos , Animais , Simulação por Computador , Região do Mediterrâneo , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...